Digital Wallet
UseCases
UNDERSTAND • Customer • Createa360-degreeviewofcustomeracrossdemographics,productholdingand CUSTOMERS genome productusage. Consolidatedatafrommultiplesourcestogetanintegratedviewofeverycustomer Createfeatures/derivedvariablestomakeinferences oncustomersbehavior Createaninteractivedashboardtovisualizecustomerbehaviorandviewrecommended products, interventions Age Balance Transaction Merchant Attribute Income Info s Demo Assets Transaction Location Prod Holding Liabilities Index Usage CUSTOMER Investments Usage Website Channel Product Merchant Up-Sell Cross-Sell Interest nt ATM Branch
ACQUIRE • Taste-led • Identify lifestyle characteristics of profitable wallet customer base to run acquisition CUSTOMERS Acquisition campaigns Identify thebestcustomersbasisprofitability andofferusage Charlie’s Restaurant Identify tasteattributes ofsuchcustomers. andBar Providelistofdemographics,tasteattributesfor SegmentX targeting and list of merchants foracquisition Indicatesaffinity Age:25-30 | Location: Bayfront,Singapore offer Preferences: European cuisine | Bars | Sea-food Facebook/GoogleAdWordscampaignis runonSegment Xwith acquisition offer for Charlie’s Restaurant and Bar ACQUIRE • OrganicReferral • Identify right customers toreferandright incentive forreferral CUSTOMERS Createclusters basedonNetworksize(L1/2/3),NetworkRangeandStrengthofRelationshipsbyleveraging multiple algorithms -K-Means,AffinityPropagation,HierarchicalClustering(Agglomerative/Divisive), DensityBased(DBSCAN, OPTICS), Distribution Based(GMM) Identify right set of customers (CustomersgetCustomers)and employees (EmployeegetCustomer)totargetforreferral Identify lifestyle tastes and recommend relevant offerstoincentivize referral
ACTIVATE • Activation • Activate new to wallet customers and revive dormant customers with relevant CUSTOMERS campaign recommendations Createcustomercohorts–‘newtowallet’usersand‘vintageuserswhohavebecomedormant’ Identifykeydrivers ofactivationforeachcohort–demographics,location,walletbalance,featureusage, offer usage across vintages -3days, 7 days, 14days, etc Targetcustomerswithrelevantmessagingonthe‘keydriver’throughalternatechannelslikeEmail,SMS
ENGAGE • Lifestyle • Recommendrelevantlifestylemerchantsandproductstodrivespends CUSTOMERS recommendations Identify relevant merchants, products forevery customerbyleveraging maya.ai tastegraphanduser’sdigital interaction behavior, transaction data Optimize the ‘rank order of preference’ for merchants and products for each individual customer basedoncontext-location, timeofday,dayofweek ENGAGE • Financialproduct • Identify customerswithpropensity totakeupfinancial products(loan,insurance, etc..) CUSTOMERS recommendations Identifycustomerswhohavetakentargetproductwithoutprompting Identify behavior for6monthspriortotakinguptheproduct Matchcustomers in theportfolio whoexhibit similar behavior based onidentified characteristics andrecommendproducts Alternatively, createX-sell models forthevarious products offered andrankordertheoneswithhighpropensityscore
RETAIN • Silent Attrition • Identify dropinengagementlevels,triggerstoidentifyrighttimetointervene. Identify CUSTOMERS relevant promotions to win-back customers Identify customercohortsusing transactional, demographic anddigital interaction data Identify signals that indicate silent attrition (for e,g, drop in balance, decreasing frequency ofusage, poorapp rating) LeverageAI/MLmodelslikedecisiontreeto identify customers in eachcohortatrisk ofchurn Targetwithrelevantofferstowin-backcustomers
MANAGE • Credit Risk Scoring • Createriskscoretoestimateprobability ofdefault RISK CreateaRiskScorebasedonapplicationdataforanewcustomer CreateaRiskScorebasedonapplicationformdataandwallettransactionbehavior Risk modelbuilt using: WOEbinningandIVbasedfeaturesselection EnsembleModelling MANAGE • KYCFraud • Identify frauds based onKYCchangedetectionandwalletusagebehavior RISK detection DetectfraudsbasedonKYCchange,largeoutflows/cashoutsbasedongeolocation Build sequencemodelstoidentifythesequenceofeventsresultinginFraud Example:KYCChange->longdistancewithdrawal
MANAGE • AMLdetection • Detectunusualcustomerbehaviorandanomaliesinmoneymovement RISK Createcohortsofcustomersbasedontransactionamount,inflowsource,outflowsource,timeoftransaction, location Identify lookalikes for each segment MANAGE • Float optimization • Identify optimal level offloat to run wallet while enabling opportunity to earn interest RISK income Createclustersofcustomersbasedonvarianceinfloat,inflow/outflowchannels,inflowandoutflowmix,number ofinteractions, min/maxdrop,tenureetc. Predict wallet balance andtransactionbehaviorforcustomersineachcluster Estimate the right float % needed to gain time and earn interest
UNDERSTAND • Merchant • Createa360-degreeviewofmerchantacrosslocation,operations,inventory,and MERCHANTS genome transactions. Consolidatedatafrommultiplesourcestogetanenrichedviewofeverymerchant Merchantsassignedtooneormoregroupsbasedonattributesoflocation,operations,inventory,and transactions. Categories Inventory Products Day, Time Location Transactions Volume Value Avgticket size Region City Postal Code Latitude,Longitude #Employees Operations Years since Inception Legal Status
ACQUIRE • Territory • Identify potential merchants toacquire in everygeo- MERCHANTS Management location HyperLocalMarketSizing&Targets HyperLocal‘TastePrints’ Sizing Mobile-based territory management of key metrics with built-in daily feedback Equipterritory managersto plan, acquire& managecustomer/merchants toreach100% Inclusion goals Inactive A/BTesting Framework&Models forDriving Active Monthly Active Users (Customers&Merchants) DailySalesPerformance Trackingfor The territory management console shows Opportunity basedontaste: merchants &customersby territory managers current penetration across merchants, agents and teams and customers 2000customersin theareahave anaffinity for transacting at the restaurant ML-basedterritory-level pricingsimulator to $4,500is thepotentialvalue that can be measure, modify &drive revenuesacross generated fromthese customersin amonth territories
ENGAGE • Customer • Empowermerchantswithinsightsoncustomersandenablethemtotargetthose MERCHANTS Targeting specific customers Identify and target right customer segment totargetformerchantsbyleveraging maya.aitastegraphanduser’sdigitalinteraction behavior,transaction data Optimize the ‘rank order of preference’ for merchants and products for each individual customer basedoncontext-location, timeofday,dayofweek ENGAGE • Financialproduct • Identify merchantswithpropensity totakeupfinancial products (loan,insurance, etc..) MERCHANTS recommendations Identifymerchantswhohavetakentargetproductwithoutprompting Identify behavior for6monthsprior totakinguptheproduct Matchmerchantsintheportfoliowhoexhibitsimilarbehaviorbased on identified characteristics andrecommendproducts Alternatively, createX-sell models forthevarious products offered and rankordertheoneswithhighpropensityscore
RETAIN • Silent Attrition • Identify dropinengagementlevels,triggerstoidentifyrighttimetointervene. Identify MERCHANTS relevant promotions to win-back merchants Identify merchantcohortsusing transactional, demographic anddigital interaction data Identify signals that indicate silent attrition (for e,g, drop in value, decreasing frequency ofusage, poorapprating) LeverageAI/MLmodelslikedecisiontreeto identify merchants in eachcohortatrisk ofchurn Alert area sales/ RMs to potential at-risk merchants Win-backmerchantsthroughbetter offer/product matching andhighervisibility